Tag Archives: Program

Jodi Aman, creator of Give Fear the Boot! an online anxiety recovery program, can help you overcome your fears and live a life of vitality! She’s been a psychotherapist for 20 years and now she’s sharing her secrets with you! – Love Yourself Up with Jodi Aman


Jodi Aman, creator of Give Fear the Boot! an online anxiety recovery program, can help you overcome your fears and live a life of vitality! She’s been a psychotherapist for 20 years and now she’s sharing her secrets with you! – Love Yourself Up with Jodi Aman
from Love Yourself Up with Jodi Aman
Price: USD 0
View Details about Jodi Aman, creator of Give Fear the Boot! an online anxiety recovery program, can help you overcome your fears and live a life of vitality! She’s been a psychotherapist for 20 years and now she’s sharing her secrets with you!

Nice Fitness Program photos

A few nice fitness program images I found:

Battalion Civilian Fitness Program
fitness program
Image by ArmyStrongPA
Phil Silevinac, the Harrisburg Battalion’s Market and Mission analyst, runs three miles on the treadmill Dec. 6 as part of the Harrisburg Recruiting Battalion’s Army Civilian Fitness Program at the fitness center on the Defense Distribution Center – Susquehanna, New Cumberland, Pa. U.S. Army photo by Christine June.

My Fitness Program
fitness program
Image by Muffet
(I always hope that neighbors don’t decide to drop in the days I try to create pictures for the Iron Photographer project.)

Fling the box over your head. Leave it there for the count of ten. Remove slowly and repeat.

Nice Weight Lifting Program photos

Check out these weight lifting program images:

Hercules Returns Home From Parts Unknown
weight lifting program
Image by Chic Bee
USAF C-130 Hercules Propeller Driven Cargo Plane Returns to Davis-Monthan Air Force Base in Tucson, Arizona.
The plane can fly home non-stop from anywhere in the world.

I did not have a camera with me, so I used my iPhone 12 Pro Max at its longest focal length.

Cropped and post processed in Apple’s Photos app.
The cropping is obviously beyond the useful resolution of this lens and sensor chip.
______________________________
C-130 Hercules military transport plane heading east over my house and turning south to approach the Davis-Monthan AFB runway from the southeast to the northwest.
______________________________
Lockheed C-130 Hercules
From Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Lockheed_C-130_Hercules

C-130 Hercules
Straight-wing, four-engine turboprop-driven aircraft overflying water
USAF C-130E
Role: Military transport aircraft
National origin: United States
ManufacturerLockheed
Lockheed Martin
First flight23 August 1954
Status: In service
Primary users:
United States Air Force
United States Marine Corps
Royal Air Force
Royal Canadian Air Force
Produced: 1954–present
Number built: Over 2,500 as of 2015[1]
Unit cost
C-130E .9 million[2]
C-130H .1 million[3]
Variants:
AC-130 Spectre/Spooky
Lockheed DC-130
Lockheed EC-130
Lockheed HC-130
Lockheed Martin KC-130
Lockheed LC-130
Lockheed MC-130
Lockheed WC-130
Lockheed L-100 Hercules
Developed into: Lockheed Martin C-130J Super Hercules

The Lockheed C-130 Hercules is a four-engine turboprop military transport aircraft designed and built originally by Lockheed, now Lockheed Martin.

Capable of using unprepared runways for takeoffs and landings, the C-130 was originally designed as a troop, medivac, and cargo transport aircraft. The versatile airframe has found uses in a variety of other roles, including as a gunship (AC-130),for
airborne assault,
search and rescue,
scientific research support,
weather reconnaissance,
aerial refueling,
maritime patrol, and
aerial firefighting.

It is now the main tactical airlifter for many military forces worldwide. Over forty models and variants of the Hercules, including a civilian one marketed as Lockheed L-100, operate in more than sixty nations.

The C-130 entered service with the U.S. in the 1950s, followed by Australia and others. During its years of service, the Hercules family has participated in numerous military, civilian and humanitarian aid operations. In 2007, the C-130 became the fifth aircraft—after the English Electric Canberra, B-52 Stratofortress, Tu-95, and KC-135 Stratotanker—to mark 50 years of continuous service with its original primary customer, in this case, the United States Air Force. The C-130 Hercules is the longest continuously produced military aircraft at over 60 years, with the updated C-130J Super Hercules being produced today.[4]

Contents [hide]
1Design and development
1.1Background and requirements
1.2Design phase
1.3Improved versions
1.4More improvements
1.5Later models
1.6Next generation
1.7Upgrades and changes
1.8Replacement
2Operational history
2.1Military
2.2Civilian
3Variants
4Operators
5Accidents
6Aircraft on display
6.1Australia
6.2Canada
6.3Colombia
6.4Indonesia
6.5Norway
6.6Saudi Arabia
6.7United Kingdom
6.8United States
7Specifications (C-130H)
8See also
9References
10External links
Design and development[edit]

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (February 2014)
Background and requirements[edit]

The Korean War, which began in June 1950, showed that World War II-era piston-engine transports—Fairchild C-119 Flying Boxcars, Douglas C-47 Skytrains and Curtiss C-46 Commandos—were inadequate for modern warfare. Thus, on 2 February 1951, the United States Air Force issued a General Operating Requirement (GOR) for a new transport to Boeing, Douglas, Fairchild, Lockheed, Martin, Chase Aircraft, North American, Northrop, and Airlifts Inc. The new transport would have a capacity of 92 passengers, 72 combat troops or 64 paratroopers in a cargo compartment that was approximately 41 feet (12 m) long, 9 feet (2.7 m) high, and 10 feet (3.0 m) wide. Unlike transports derived from passenger airliners, it was to be designed from the ground-up as a combat transport with loading from a hinged loading ramp at the rear of the fuselage.

A key feature was the introduction of the Allison T56 turboprop powerplant, first developed specifically for the C-130. At the time, the turboprop was a new application of turbine engines that used exhaust gases to turn a propeller, which offered greater range at propeller-driven speeds compared to pure turbojets, which were faster but consumed more fuel. As was the case on helicopters of that era, such as the UH-1 Huey, turboshafts produced much more power for their weight than piston engines. Lockheed would subsequently use the same engines and technology in the Lockheed L-188 Electra. That aircraft failed financially in its civilian configuration but was successfully adapted into the Lockheed P-3 Orion maritime patrol and submarine attack aircraft where the efficiency and endurance of turboprops excelled.

Design phase[edit]
The Hercules resembled a larger four-engine brother to the C-123 Provider with a similar wing and cargo ramp layout that evolved from the Chase XCG-20 Avitruc, which in turn, was first designed and flown as a cargo glider in 1947.[5] The Boeing C-97 Stratofreighter also had a rear ramp, which made it possible to drive vehicles onto the plane (also possible with forward ramp on a C-124). The ramp on the Hercules was also used to airdrop cargo, which included low-altitude extraction for Sheridan tanks and even dropping large improvised "daisy cutter" bombs.

The new Lockheed cargo plane design possessed a range of 1,100 nmi (1,270 mi; 2,040 km), takeoff capability from short and unprepared strips, and the ability to fly with one engine shut down. Fairchild, North American, Martin, and Northrop declined to participate. The remaining five companies tendered a total of ten designs: Lockheed two, Boeing one, Chase three, Douglas three, and Airlifts Inc. one. The contest was a close affair between the lighter of the two Lockheed (preliminary project designation L-206) proposals and a four-turboprop Douglas design.

The Lockheed design team was led by Willis Hawkins, starting with a 130-page proposal for the Lockheed L-206.[6] Hall Hibbard, Lockheed vice president and chief engineer, saw the proposal and directed it to Kelly Johnson, who did not care for the low-speed, unarmed aircraft, and remarked, "If you sign that letter, you will destroy the Lockheed Company."[6] Both Hibbard and Johnson signed the proposal and the company won the contract for the now-designated Model 82 on 2 July 1951.[7]

The first flight of the YC-130 prototype was made on 23 August 1954 from the Lockheed plant in Burbank, California. The aircraft, serial number 53-3397, was the second prototype, but the first of the two to fly. The YC-130 was piloted by Stanley Beltz and Roy Wimmer on its 61-minute flight to Edwards Air Force Base; Jack Real and Dick Stanton served as flight engineers. Kelly Johnson flew chase in a Lockheed P2V Neptune.[8]

After the two prototypes were completed, production began in Marietta, Georgia, where over 2,300 C-130s have been built through 2009.[9]

The initial production model, the C-130A, was powered by Allison T56-A-9 turboprops with three-blade propellers and originally equipped with the blunt nose of the prototypes. Deliveries began in December 1956, continuing until the introduction of the C-130B model in 1959. Some A-models were equipped with skis and re-designated C-130D.

As the C-130A became operational with Tactical Air Command (TAC), the C-130’s lack of range became apparent and additional fuel capacity was added in the form of external pylon-mounted tanks at the end of the wings.

Improved versions[edit]

A Michigan Air National Guard C-130E dispatches its flares during a low-level training mission
The C-130B model was developed to complement the A-models that had previously been delivered, and incorporated new features, particularly increased fuel capacity in the form of auxiliary tanks built into the center wing section and an AC electrical system. Four-bladed Hamilton Standard propellers replaced the Aeroproducts three-blade propellers that distinguished the earlier A-models. The C-130B had ailerons with increased boost—3,000 psi (21 MPa) versus 2,050 psi (14 MPa)—as well as uprated engines and four-blade propellers that were standard until the J-model’s introduction.

An electronic reconnaissance variant of the C-130B was designated C-130B-II. A total of 13 aircraft were converted. The C-130B-II was distinguished by its false external wing fuel tanks, which were disguised signals intelligence (SIGINT) receiver antennas. These pods were slightly larger than the standard wing tanks found on other C-130Bs. Most aircraft featured a swept blade antenna on the upper fuselage, as well as extra wire antennas between the vertical fin and upper fuselage not found on other C-130s. Radio call numbers on the tail of these aircraft were regularly changed so as to confuse observers and disguise their true mission.

The extended-range C-130E model entered service in 1962 after it was developed as an interim long-range transport for the Military Air Transport Service. Essentially a B-model, the new designation was the result of the installation of 1,360 US gal (5,150 L) Sargent Fletcher external fuel tanks under each wing’s midsection and more powerful Allison T56-A-7A turboprops. The hydraulic boost pressure to the ailerons was reduced back to 2050 psi as a consequence of the external tanks’ weight in the middle of the wingspan. The E model also featured structural improvements, avionics upgrades and a higher gross weight. Australia took delivery of 12 C130E Hercules during 1966–67 to supplement the 12 C-130A models already in service with the RAAF. Sweden and Spain fly the TP-84T version of the C-130E fitted for aerial refueling capability.

The KC-130 tankers, originally C-130F procured for the US Marine Corps (USMC) in 1958 (under the designation GV-1) are equipped with a removable 3,600 US gal (13,626 L) stainless steel fuel tank carried inside the cargo compartment. The two wing-mounted hose and drogue aerial refueling pods each transfer up to 300 US gal per minute (19 L per second) to two aircraft simultaneously, allowing for rapid cycle times of multiple-receiver aircraft formations, (a typical tanker formation of four aircraft in less than 30 minutes). The US Navy’s C-130G has increased structural strength allowing higher gross weight operation.

More improvements[edit]

Royal Australian Air Force C-130H, 2007
The C-130H model has updated Allison T56-A-15 turboprops, a redesigned outer wing, updated avionics and other minor improvements. Later H models had a new, fatigue-life-improved, center wing that was retrofitted to many earlier H-models. For structural reasons, some models are required to land with certain amounts of fuel when carrying heavy cargo, reducing usable range.[10] The H model remains in widespread use with the United States Air Force (USAF) and many foreign air forces. Initial deliveries began in 1964 (to the RNZAF), remaining in production until 1996. An improved C-130H was introduced in 1974, with Australia purchasing 12 of type in 1978 to replace the original 12 C-130A models, which had first entered RAAF Service in 1958.

The United States Coast Guard employs the HC-130H for long-range search and rescue, drug interdiction, illegal migrant patrols, homeland security, and logistics.

C-130H models produced from 1992 to 1996 were designated as C-130H3 by the USAF. The "3" denoting the third variation in design for the H series. Improvements included ring laser gyros for the INUs, GPS receivers, a partial glass cockpit (ADI and HSI instruments), a more capable APN-241 color radar, night vision device compatible instrument lighting, and an integrated radar and missile warning system. The electrical system upgrade included Generator Control Units (GCU) and Bus Switching units (BSU)to provide stable power to the more sensitive upgraded components.[citation needed]

Royal Air Force C-130K (C.3)
The equivalent model for export to the UK is the C-130K, known by the Royal Air Force (RAF) as the Hercules C.1. The C-130H-30 (Hercules C.3 in RAF service) is a stretched version of the original Hercules, achieved by inserting a 100 in (2.54 m) plug aft of the cockpit and an 80 in (2.03 m) plug at the rear of the fuselage. A single C-130K was purchased by the Met Office for use by its Meteorological Research Flight, where it was classified as the Hercules W.2. This aircraft was heavily modified (with its most prominent feature being the long red and white striped atmospheric probe on the nose and the move of the weather radar into a pod above the forward fuselage). This aircraft, named Snoopy, was withdrawn in 2001 and was then modified by Marshall of Cambridge Aerospace as flight-testbed for the A400M turbine engine, the TP400. The C-130K is used by the RAF Falcons for parachute drops. Three C-130K (Hercules C Mk.1P) were upgraded and sold to the Austrian Air Force in 2002.[11]

Later models[edit]
The MC-130E Combat Talon was developed for the USAF during the Vietnam War to support special operations missions in Southeast Asia, and led to both the MC-130H Combat Talon II as well as a family of other special missions aircraft. 37 of the earliest models currently operating with the Air Force Special Operations Command (AFSOC) are scheduled to be replaced by new-production MC-130J versions. The EC-130 Commando Solo is another special missions variant within AFSOC, albeit operated solely by an AFSOC-gained wing in the Pennsylvania Air National Guard, and is a psychological operations/information operations (PSYOP/IO) platform equipped as an aerial radio station and television stations able to transmit messaging over commercial frequencies. Other versions of the EC-130, most notably the EC-130H Compass Call, are also special variants, but are assigned to the Air Combat Command (ACC). The AC-130 gunship was first developed during the Vietnam War to provide close air support and other ground-attack duties.

USAF HC-130P refuels a HH-60G Pavehawk helicopter
The HC-130 is a family of long-range search and rescue variants used by the USAF and the U.S. Coast Guard. Equipped for deep deployment of Pararescuemen (PJs), survival equipment, and (in the case of USAF versions) aerial refueling of combat rescue helicopters, HC-130s are usually the on-scene command aircraft for combat SAR missions (USAF only) and non-combat SAR (USAF and USCG). Early USAF versions were also equipped with the Fulton surface-to-air recovery system, designed to pull a person off the ground using a wire strung from a helium balloon. The John Wayne movie The Green Berets features its use. The Fulton system was later removed when aerial refueling of helicopters proved safer and more versatile. The movie The Perfect Storm depicts a real life SAR mission involving aerial refueling of a New York Air National Guard HH-60G by a New York Air National Guard HC-130P.

The C-130R and C-130T are U.S. Navy and USMC models, both equipped with underwing external fuel tanks. The USN C-130T is similar, but has additional avionics improvements. In both models, aircraft are equipped with Allison T56-A-16 engines. The USMC versions are designated KC-130R or KC-130T when equipped with underwing refueling pods and pylons and are fully night vision system compatible.

The RC-130 is a reconnaissance version. A single example is used by the Islamic Republic of Iran Air Force, the aircraft having originally been sold to the former Imperial Iranian Air Force.

The Lockheed L-100 (L-382) is a civilian variant, equivalent to a C-130E model without military equipment. The L-100 also has two stretched versions.

Next generation[edit]
Main article: Lockheed Martin C-130J Super Hercules
In the 1970s, Lockheed proposed a C-130 variant with turbofan engines rather than turboprops, but the U.S. Air Force preferred the takeoff performance of the existing aircraft. In the 1980s, the C-130 was intended to be replaced by the Advanced Medium STOL Transport project. The project was canceled and the C-130 has remained in production.

Building on lessons learned, Lockheed Martin modified a commercial variant of the C-130 into a High Technology Test Bed (HTTB). This test aircraft set numerous short takeoff and landing performance records and significantly expanded the database for future derivatives of the C-130.[12] Modifications made to the HTTB included extended chord ailerons, a long chord rudder, fast-acting double-slotted trailing edge flaps, a high-camber wing leading edge extension, a larger dorsal fin and dorsal fins, the addition of three spoiler panels to each wing upper surface, a long-stroke main and nose landing gear system, and changes to the flight controls and a change from direct mechanical linkages assisted by hydraulic boost, to fully powered controls, in which the mechanical linkages from the flight station controls operated only the hydraulic control valves of the appropriate boost unit.[13] The HTTB first flew on 19 June 1984, with civil registration of N130X. After demonstrating many new technologies, some of which were applied to the C-130J, the HTTB was lost in a fatal accident on 3 February 1993, at Dobbins Air Reserve Base, in Marietta, Georgia.[14] The crash was attributed to disengagement of the rudder fly-by-wire flight control system, resulting in a total loss of rudder control capability while conducting ground minimum control speed tests (Vmcg). The disengagement was a result of the inadequate design of the rudder’s integrated actuator package by its manufacturer; the operator’s insufficient system safety review failed to consider the consequences of the inadequate design to all operating regimes. A factor which contributed to the accident was the flight crew’s lack of engineering flight test training.[15]

In the 1990s, the improved C-130J Super Hercules was developed by Lockheed (later Lockheed Martin). This model is the newest version and the only model in production. Externally similar to the classic Hercules in general appearance, the J model has new turboprop engines, six-bladed propellers, digital avionics, and other new systems.[16]

Upgrades and changes[edit]
In 2000, Boeing was awarded a US.4 billion contract to develop an Avionics Modernization Program kit for the C-130. The program was beset with delays and cost overruns until project restructuring in 2007.[17] On 2 September 2009, Bloomberg news reported that the planned Avionics Modernization Program (AMP) upgrade to the older C-130s would be dropped to provide more funds for the F-35, CV-22 and airborne tanker replacement programs.[18] However, in June 2010, Department of Defense approved funding for the initial production of the AMP upgrade kits.[19][20] Under the terms of this agreement, the USAF has cleared Boeing to begin low-rate initial production (LRIP) for the C-130 AMP. A total of 198 aircraft are expected to feature the AMP upgrade. The current cost per aircraft is US million although Boeing expects that this price will drop to US million for the 69th aircraft.[17]

An engine enhancement program saving fuel and providing lower temperatures in the T56 engine has been approved, and the US Air Force expects to save billion and extend the fleet life.[21]

Replacement[edit]
In October 2010, the Air Force released a capabilities request for information (CRFI) for the development of a new airlifter to replace the C-130. The new aircraft is to carry a 190 percent greater payload and assume the mission of mounted vertical maneuver (MVM). The greater payload and mission would enable it to carry medium-weight armored vehicles and drop them off at locations without long runways. Various options are being considered, including new or upgraded fixed-wing designs, rotorcraft, tiltrotors, or even an airship. Development could start in 2014, and become operational by 2024. The C-130 fleet of around 450 planes would be replaced by only 250 aircraft.[22] The Air Force had attempted to replace the C-130 in the 1970s through the Advanced Medium STOL Transport project, which resulted in the C-17 Globemaster III that instead replaced the C-141 Starlifter.[23] The Air Force Research Laboratory funded Lockheed and Boeing demonstrators for the Speed Agile concept, which had the goal of making a STOL aircraft that can take off and land at speeds as low as 70 kn (130 km/h; 81 mph) on airfields less than 2,000 ft (610 m) long and cruise at Mach 0.8-plus. Boeing’s design used upper-surface blowing from embedded engines on the inboard wing and blown flaps for circulation control on the outboard wing. Lockheed’s design also used blown flaps outboard, but inboard used patented reversing ejector nozzles. Boeing’s design completed over 2,000 hours of windtunnel tests in late 2009. It was a 5 percent-scale model of a narrowbody design with a 55,000 lb (25,000 kg) payload. When the AFRL increased the payload requirement to 65,000 lb (29,000 kg), they tested a 5% scale model of a widebody design with a 303,000 lb (137,000 kg) take-off gross weight and an "A400M-size" 158 in (4.0 m) wide cargo box. It would be powered by four IAE V2533 turbofans.[24] In August 2011, the AFRL released pictures of the Lockheed Speed Agile concept demonstrator. A 23% scale model went through wind tunnel tests to demonstrate its hybrid powered lift, which combines a low drag airframe with simple mechanical assembly to reduce weight and better aerodynamics. The model had four engines, including two Williams FJ44 turbofans.[23][25] On 26 March 2013, Boeing was granted a patent for its swept-wing powered lift aircraft.[26]

As of January 2014, Air Mobility Command, Air Force Materiel Command and the Air Force Research Lab are in the early stages of defining requirements for the C-X next generation airlifter program to replace both the C-130 and C-17. An aircraft would be produced from the early 2030s to the 2040s. If requirements are decided for operating in contested airspace, Air Force procurement of C-130s would end by the end of the decade to not have them serviceable by the 2030s and operated when they can’t perform in that environment. Development of the airlifter depends heavily on the Army’s "tactical and operational maneuver" plans. Two different cargo planes could still be created to separately perform tactical and strategic missions, but which course to pursue is to be decided before C-17s need to be retired.[27]

Operational history[edit]

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (February 2014)
Military[edit]

USMC KC-130F Hercules performing takeoffs and landings aboard the aircraft carrier Forrestal in 1963. The aircraft is now displayed at the National Museum of Naval Aviation.
The first production aircraft, C-130As were first delivered beginning in 1956 to the 463d Troop Carrier Wing at Ardmore AFB, Oklahoma and the 314th Troop Carrier Wing at Sewart AFB, Tennessee. Six additional squadrons were assigned to the 322d Air Division in Europe and the 315th Air Division in the Far East. Additional aircraft were modified for electronics intelligence work and assigned to Rhein-Main Air Base, Germany while modified RC-130As were assigned to the Military Air Transport Service (MATS) photo-mapping division.

In 1958, a U.S. reconnaissance C-130A-II of the 7406th Support Squadron was shot down over Armenia by MiG-17s.[28]

Australia became the first non-American force to operate the C-130A Hercules with 12 examples being delivered from late 1958. These aircraft were fitted with AeroProducts three-blade, 15-foot diameter propellers. The Royal Canadian Air Force became another early user with the delivery of four B-models (Canadian designation C-130 Mk I) in October / November 1960.[29]

In 1963, a Hercules achieved and still holds the record for the largest and heaviest aircraft to land on an aircraft carrier.[30] During October and November that year, a USMC KC-130F (BuNo 149798), loaned to the U.S. Naval Air Test Center, made 29 touch-and-go landings, 21 unarrested full-stop landings and 21 unassisted take-offs on Forrestal at a number of different weights.[31] The pilot, LT (later RADM) James H. Flatley III, USN, was awarded the Distinguished Flying Cross for his role in this test series. The tests were highly successful, but the idea was considered too risky for routine "Carrier Onboard Delivery" (COD) operations. Instead, the Grumman C-2 Greyhound was developed as a dedicated COD aircraft. The Hercules used in the test, most recently in service with Marine Aerial Refueler Squadron 352 (VMGR-352) until 2005, is now part of the collection of the National Museum of Naval Aviation at NAS Pensacola, Florida.

In 1964, C-130 crews from the 6315th Operations Group at Naha Air Base, Okinawa commenced forward air control (FAC; "Flare") missions over the Ho Chi Minh Trail in Laos supporting USAF strike aircraft. In April 1965 the mission was expanded to North Vietnam where C-130 crews led formations of B-57 bombers on night reconnaissance/strike missions against communist supply routes leading to South Vietnam. In early 1966 Project Blind Bat/Lamplighter was established at Ubon RTAFB, Thailand. After the move to Ubon the mission became a four-engine FAC mission with the C-130 crew searching for targets then calling in strike aircraft. Another little-known C-130 mission flown by Naha-based crews was Operation Commando Scarf, which involved the delivery of chemicals onto sections of the Ho Chi Minh Trail in Laos that were designed to produce mud and landslides in hopes of making the truck routes impassable.[citation needed]

In November 1964, on the other side of the globe, C-130Es from the 464th Troop Carrier Wing but loaned to 322d Air Division in France, flew one of the most dramatic missions in history in the former Belgian Congo. After communist Simba rebels took white residents of the city of Stanleyville hostage, the U.S. and Belgium developed a joint rescue mission that used the C-130s to airlift and then drop and air-land a force of Belgian paratroopers to rescue the hostages. Two missions were flown, one over Stanleyville and another over Paulis during Thanksgiving weeks.[32] The headline-making mission resulted in the first award of the prestigious MacKay Trophy to C-130 crews.

In the Indo-Pakistani War of 1965, as a desperate measure the transport No. 6 Squadron of the Pakistan Air Force modified its entire small fleet of C-130Bs for use as heavy bombers, capable of carrying up to 20,000 lb (9,072 kg) of bombs on pallets. These improvised bombers were used to hit Indian targets such as bridges, heavy artillery positions, tank formations and troop concentrations.[33][34] Some C-130s even flew with anti-aircraft guns fitted on their ramp, apparently shooting down some 17 aircraft and damaging 16 others.[35]

The C-130 Hercules were used in the Battle of Kham Duc in 1968, when the North Vietnamese Army forced U.S.-led forces to abandon the Kham Duc Special Forces Camp.
In October 1968, a C-130Bs from the 463rd Tactical Airlift Wing dropped a pair of M-121 10,000 pound bombs that had been developed for the massive B-36 bomber but had never been used. The U.S. Army and U.S. Air Force resurrected the huge weapons as a means of clearing landing zones for helicopters and in early 1969 the 463rd commenced Commando Vault missions. Although the stated purpose of COMMANDO VAULT was to clear LZs, they were also used on enemy base camps and other targets.[citation needed]

During the late 1960s, the U.S. was eager to get information on Chinese nuclear capabilities. After the failure of the Black Cat Squadron to plant operating sensor pods near the Lop Nur Nuclear Weapons Test Base using a Lockheed U-2, the CIA developed a plan, named Heavy Tea, to deploy two battery-powered sensor pallets near the base. To deploy the pallets, a Black Bat Squadron crew was trained in the U.S. to fly the C-130 Hercules. The crew of 12, led by Col Sun Pei Zhen, took off from Takhli Royal Thai Air Force Base in an unmarked U.S. Air Force C-130E on 17 May 1969. Flying for six and a half hours at low altitude in the dark, they arrived over the target and the sensor pallets were dropped by parachute near Anxi in Gansu province. After another six and a half hours of low altitude flight, they arrived back at Takhli. The sensors worked and uploaded data to a U.S. intelligence satellite for six months, before their batteries wore out. The Chinese conducted two nuclear tests, on 22 September 1969 and 29 September 1969, during the operating life of the sensor pallets. Another mission to the area was planned as Operation Golden Whip, but was called off in 1970.[36] It is most likely that the aircraft used on this mission was either C-130E serial number 64-0506 or 64-0507 (cn 382-3990 and 382-3991). These two aircraft were delivered to Air America in 1964.[37] After being returned to the U.S. Air Force sometime between 1966 and 1970, they were assigned the serial numbers of C-130s that had been destroyed in accidents. 64-0506 is now flying as 62-1843, a C-130E that crashed in Vietnam on 20 December 1965 and 64-0507 is now flying as 63-7785, a C-130E that had crashed in Vietnam on 17 June 1966.[38]

The A-model continued in service through the Vietnam War, where the aircraft assigned to the four squadrons at Naha AB, Okinawa and one at Tachikawa Air Base, Japan performed yeoman’s service, including operating highly classified special operations missions such as the BLIND BAT FAC/Flare mission and FACT SHEET leaflet mission over Laos and North Vietnam. The A-model was also provided to the South Vietnamese Air Force as part of the Vietnamization program at the end of the war, and equipped three squadrons based at Tan Son Nhut AFB. The last operator in the world is the Honduran Air Force, which is still flying one of five A model Hercules (FAH 558, c/n 3042) as of October 2009.[39] As the Vietnam War wound down, the 463rd Troop Carrier/Tactical Airlift Wing B-models and A-models of the 374th Tactical Airlift Wing were transferred back to the United States where most were assigned to Air Force Reserve and Air National Guard units.

U.S. Marines disembark from C-130 transports at the Da Nang Airbase on 8 March 1965
Another prominent role for the B model was with the United States Marine Corps, where Hercules initially designated as GV-1s replaced C-119s. After Air Force C-130Ds proved the type’s usefulness in Antarctica, the U.S. Navy purchased a number of B-models equipped with skis that were designated as LC-130s. C-130B-II electronic reconnaissance aircraft were operated under the SUN VALLEY program name primarily from Yokota Air Base, Japan. All reverted to standard C-130B cargo aircraft after their replacement in the reconnaissance role by other aircraft.

The C-130 was also used in the 1976 Entebbe raid in which Israeli commando forces carried a surprise assault to rescue 103 passengers of an airliner hijacked by Palestinian and German terrorists at Entebbe Airport, Uganda. The rescue force — 200 soldiers, jeeps, and a black Mercedes-Benz (intended to resemble Ugandan Dictator Idi Amin’s vehicle of state) — was flown over 2,200 nmi (4,074 km; 2,532 mi) almost entirely at an altitude of less than 100 ft (30 m) from Israel to Entebbe by four Israeli Air Force (IAF) Hercules aircraft without mid-air refueling (on the way back, the planes refueled in Nairobi, Kenya).

During the Falklands War (Spanish: Guerra de las Malvinas) of 1982, Argentine Air Force C-130s undertook highly dangerous, daily re-supply night flights as blockade runners to the Argentine garrison on the Falkland Islands. They also performed daylight maritime survey flights. One was lost during the war. Argentina also operated two KC-130 tankers during the war, and these refueled both the Douglas A-4 Skyhawks and Navy Dassault-Breguet Super Étendards; some C-130s were modified to operate as bombers with bomb-racks under their wings. The British also used RAF C-130s to support their logistical operations.

USMC C-130T Fat Albert performing a rocket-assisted takeoff (RATO)
During the Gulf War of 1991 (Operation Desert Storm), the C-130 Hercules was used operationally by the U.S. Air Force, U.S. Navy and U.S. Marine Corps, along with the air forces of Australia, New Zealand, Saudi Arabia, South Korea and the UK. The MC-130 Combat Talon variant also made the first attacks using the largest conventional bombs in the world, the BLU-82 "Daisy Cutter" and GBU-43/B "Massive Ordnance Air Blast" bomb, (MOAB). Daisy Cutters were used to clear landing zones and to eliminate mine fields. The weight and size of the weapons make it impossible or impractical to load them on conventional bombers. The GBU-43/B MOAB is a successor to the BLU-82 and can perform the same function, as well as perform strike functions against hardened targets in a low air threat environment.

Since 1992, two successive C-130 aircraft named Fat Albert have served as the support aircraft for the U.S. Navy Blue Angels flight demonstration team. Fat Albert I was a TC-130G (151891),[40] while Fat Albert II is a C-130T (164763).[41] Although Fat Albert supports a Navy squadron, it is operated by the U.S. Marine Corps (USMC) and its crew consists solely of USMC personnel. At some air shows featuring the team, Fat Albert takes part, performing flyovers. Until 2009, it also demonstrated its rocket-assisted takeoff (RATO) capabilities; these ended due to dwindling supplies of rockets.[42]

The AC-130 also holds the record for the longest sustained flight by a C-130. From 22 to 24 October 1997, two AC-130U gunships flew 36 hours nonstop from Hurlburt Field Florida to Taegu (Daegu), South Korea while being refueled seven times by KC-135 tanker aircraft. This record flight shattered the previous record longest flight by over 10 hours while the two gunships took on 410,000 lb (190,000 kg) of fuel. The gunship has been used in every major U.S. combat operation since Vietnam, except for Operation El Dorado Canyon, the 1986 attack on Libya.[43]

C-130 Hercules performs a tactical landing on a dirt strip
During the invasion of Afghanistan in 2001 and the ongoing support of the International Security Assistance Force (Operation Enduring Freedom), the C-130 Hercules has been used operationally by Australia, Belgium, Canada, Denmark, France, Italy, the Netherlands, New Zealand, Norway, Portugal, South Korea, Spain, the UK and the United States.

During the 2003 invasion of Iraq (Operation Iraqi Freedom), the C-130 Hercules was used operationally by Australia, the UK and the United States. After the initial invasion, C-130 operators as part of the Multinational force in Iraq used their C-130s to support their forces in Iraq.

Since 2004, the Pakistan Air Force has employed C-130s in the War in North-West Pakistan. Some variants had forward looking infrared (FLIR Systems Star Safire III EO/IR) sensor balls, to enable close tracking of Islamist militants.[44]

Civilian[edit]

A C-130E fitted with a MAFFS-1 dropping fire retardant
The U.S. Forest Service developed the Modular Airborne FireFighting System for the C-130 in the 1970s, which allows regular aircraft to be temporarily converted to an airtanker for fighting wildfires.[45] In the late 1980s, 22 retired USAF C-130As were removed from storage at Davis-Monthan Air Force Base and transferred to the U.S. Forest Service who then sold them to six private companies to be converted into air tankers (see U.S. Forest Service airtanker scandal). After one of these aircraft crashed due to wing separation in flight as a result of fatigue stress cracking, the entire fleet of C-130A air tankers was permanently grounded in 2004 (see 2002 airtanker crashes). C-130s have been used to spread chemical dispersants onto the massive oil slick in the Gulf Coast in 2010.[46]

A recent development of a C-130–based airtanker is the Retardant Aerial Delivery System developed by Coulson Aviation USA . The system consists of a C-130H/Q retrofitted with an in-floor discharge system, combined with a removable 3,500- or 4,000-gallon water tank. The combined system is FAA certified.[47]

Variants[edit]

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (February 2014)

C-130H Hercules flight deck

A U.S. JC-130 aircraft retrieving a reconnaissance satellite film capsule under parachute.

C-130s from the: U.S., Canada, Australia and Israel (foreground to background)

RAAF C-130J-30 at Point Cook, 2006

Brazilian Air Force C-130 (L-382)
For civilian versions, see Lockheed L-100 Hercules.
Significant military variants of the C-130 include:

C-130A/B/E/F/G/H/K/T
Tactical airlifter basic models
C-130A-II Dreamboat
Early version Electronic Intelligence/Signals Intelligence (ELINT/SIGINT) aircraft[48]
C-130J Super Hercules
Tactical airlifter, with new engines, avionics, and updated systems
C-130K
Designation for RAF Hercules C1/W2/C3 aircraft (C-130Js in RAF service are the Hercules C.4 and Hercules C.5)
AC-130A/E/H/J/U/W
Gunship variants
C-130D/D-6
Ski-equipped version for snow and ice operations United States Air Force / Air National Guard
CC-130E/H/J Hercules
Designation for Canadian Armed Forces / Royal Canadian Air Force Hercules aircraft. U.S. Air Force used the CC-130J designation to differentiate standard C-130Js from "stretched" C-130Js (Company designation C-130J-30s).
DC-130A/E/H
USAF and USN Drone control
EC-130
EC-130E/J Commando Solo – USAF / Air National Guard psychological operations version
EC-130E – Airborne Battlefield Command and Control Center (ABCCC)
EC-130E Rivet Rider – Airborne psychological warfare aircraft
EC-130H Compass Call – Electronic warfare and electronic attack.[49]
EC-130V – Airborne early warning and control (AEW&C) variant used by USCG for counter-narcotics missions[50]
GC-130
Permanently Grounded "Static Display"
HC-130
HC-130B/E/H – Early model combat search and rescue
HC-130P/N Combat King – USAF aerial refueling tanker and combat search and rescue
HC-130J Combat King II – Next generation combat search and rescue tanker
HC-130H/J – USCG long-range surveillance and search and rescue
JC-130
Temporary conversion for flight test operations
KC-130F/R/T/J
United States Marine Corps aerial refueling tanker and tactical airlifter
LC-130F/H/R
USAF / Air National Guard – Ski-equipped version for Arctic and Antarctic support operations; LC-130F previously operated by USN
MC-130
MC-130E/H Combat Talon I/II – Special operations infiltration/extraction variant
MC-130W Combat Spear/Dragon Spear – Special operations tanker/gunship[51]
MC-130P Combat Shadow – Special operations tanker
MC-130J Commando II (formerly Combat Shadow II) – Special operations tanker Air Force Special Operations Command[52]
YMC-130H – Modified aircraft under Operation Credible Sport for second Iran hostage crisis rescue attempt
NC-130
Permanent conversion for flight test operations
PC-130/C-130-MP
Maritime patrol
RC-130A/S
Surveillance aircraft for reconnaissance
SC-130J Sea Herc
Proposed maritime patrol version of the C-130J, designed for coastal surveillance and anti-submarine warfare.[53][54]
TC-130
Aircrew training
VC-130H
VIP transport
WC-130A/B/E/H/J
Weather reconnaissance ("Hurricane Hunter") version for USAF / Air Force Reserve Command’s 53d Weather Reconnaissance Squadron in support of the National Weather Service’s National Hurricane Center
_________________________________

KSC-20210113-PH-BOE01_0001
weight lifting program
Image by NASAKennedy
Boeing’s Starliner crew module for the company’s second Orbital Flight Test (OFT-2) is lifted Wednesday, Jan. 13, 2021, in the Commercial Crew and Cargo Processing Facility at Kennedy Space Center in Florida prior to the vehicle having a weight and center of gravity test. OFT-2 is a critical developmental milestone on the company’s path toward flying crew missions for NASA, as part of the agency’s Commercial Crew Program. Photo credit: Boeing/John Grant
NASA image use policy.

Ford GT 40
weight lifting program
Image by pedrosimoes7
Cascais Classic Motor Show, Cascais, Portugal

From Wikipedia, the free encyclopedia

This article is about the 1960s Le Mans-winning racing car.

OVERVIEW

ManufacturerFord Advanced Vehicles
John Wyer Automotive Engineering
Kar Kraft
Shelby American
Production
1964-1969

107 produced

AssemblySlough, UK (Mk I, Mk II, and Mk III)
Wixom, Michigan, USA (Mk IV)
Body and chassis
ClassGroup 4 Sports Car
Group 6 Sports Prototype
Body style couple
Roadster

POWERTRAIN

Engine4181 cc (255 CID) V-8
4737 cc (289 CID) V-8
6997 cc (427 CID) V-8
4942 cc (302 CID) V-8
Transmission4-speed manual

DIMENSIONS

Wheelbase95 in (2,413 mm)[2]
Length160 in (4,064 mm)
Width70 in (1,778 mm)
Height40.5 in (1,029 mm)
Curb weight2,002 lb (908 kg)
Chronology
SuccessorFord P68 and Ford GT

Henry Ford II along with Bruce McLaren and Chris Amon celebrates the first victory for an American manufacturer at the 24 Hours of Le Mans on the podium in 1966.

Ford GT40 Mk II front. This car took second place overall (all three top finishers were Ford GT40s) in the 1966 24 Hours of Daytona. The #1 car was driven by Ken Miles and Lloyd Ruby, and together with the #2 car driven by Bruce McLaren/Chris Amon (1st overall) and #5 car drove by Bucknum/Hutcherson (3rd overall) gave Ford its first victory in a 24-hour race. The photo shows the livery as used at Le Mans in 1966. (Serial Number GT-40 P 1015 Mk. II)

The Ford GT40 is a high-performance American-British endurance racing car, designed and built in England (Mk I, Mk II, and Mk III) and in the United States (Mk IV), and powered by a series of American-built engines.

The GT40 won the 24 Hours of Le Mans four consecutive times, from 1966 to 1969 (1966 being the Mk II, 1967 the Mk IV, and 1968-1969 the oldest chassis design, the Mk I), including a 1-2-3 finish in 1966.

In 1966, with Henry Ford II himself in attendance at Le Mans, the Mk II GT40 provided Ford with the first overall Le Mans victory for an American manufacturer and the first victory for an American manufacturer at a major European race since Jimmy Murphy´s triumph with Duesenberg at the 1921 French Grand Prix.

The Mk IV GT40 that won Le Mans in 1967 is the only car designed and built entirely in the United States to achieve the overall win at Le Mans.

The GT40 was originally produced to win long-distance sports car races against Ferrari (who won at Le Mans six times in a row from 1960 to 1965). FORD/Shelby Chassis # P-1075, which won in 1968 and 1969, is the first car in Le Mans history to win the race more than once, with the same chassis.

Using an American Ford V-8 engine originally of 4.7-litre displacement capacity (289 cubic inches). It was later enlarged to the 4.9-litre engine (302 cubic inches), with custom-designed alloy Gurney-Weslake cylinder heads.

The car was named the GT (for Grand Touring) with the 40 representing its overall height of 40 inches (1.02 m, measured at the windshield) as required by the rules. Large displacement Ford V8 engines (4.2 litres, 4.7 litres and 7 litres) were used, compared with the Ferrari V12 which displaced 3.0 litres or 4.0 litres.

Early cars were simply named "Ford GT". The name "GT40" was the name of Ford’s project to prepare the cars for the international endurance racing circuit, and the quest to win the 24 Hours of Le Mans.

The first 12 "prototype" vehicles carried serial numbers GT-101 through GT-112. The "production" began and the subsequent cars—the MkI, MkII, MkIII, and MkV (with the exception of the MkIV, which were numbered J1-J12)—were numbered GT40P/1000 through GT40P/1145, and thus officially "GT40s". The name of Ford’s project and the serial numbers dispel the story that "GT40" was "only a nickname."

The contemporary Ford GT is a modern homage to the GT40.

HISTORY

Henry Ford II had wanted a Ford at Le Mans since the early 1960s.

In the spring of 1963, Ford reportedly received word through a European intermediary that Enzo Ferrari was interested in selling to Ford Motor Company. Ford reportedly spent several million dollars in an audit of Ferrari factory assets and in legal negotiations, only to have Ferrari unilaterally cut off talks at a late stage due to disputes about the ability to directly open-wheel racing.

Ferrari, who wanted to remain the sole operator of his company’s motorsports division, was angered when he was told that he would not be allowed to race at the Indianapolis 500 if the deal went through since Ford fielded Indy cars using the company’s engine, and didn’t want competition from Ferrari. Enzo cut the deal off out of spite and Henry Ford II, enraged, directed his racing division to find a company that could build a Ferrari-beater on the world endurance-racing circuit.

To this end, Ford began negotiation with Lotus, Lola, and Cooper. Cooper had no experience in GT or prototype and its performances in Formula One were declining.

Lotus was already a Ford partner for their Indy 500 project, but Ford executives doubted the ability of Lotus to handle this new project. Colin Chapman probably had similar views as he asked a high price for his contribution and insisted that the car (which became the Lotus Europa) should be named a Lotus-Ford.

LOLA MK.6

The Lola proposal was chosen since Lola had used a Ford V8 engine in their mid-engined Lola Mk6 (also known as Lola GT). It was one of the most advanced racing cars of the time, and made a noted performance in Le Mans 1963, even though the car did not finish, due to low gearing and slow revving out on the Mulsanne Straight.

However, Eric Broadley, Lola Cars’ owner and chief designer, agreed on a short-term personal contribution to the project without involving Lola Cars.

The agreement with Broadley included a one-year collaboration between Ford and Broadley, and the sale of the two Lola Mk 6 chassis builds to Ford. To form the development team, Ford also hired the ex-Aston Martin team manager John Wyer. Ford Motor Co. engineer Roy Lunn was sent to England; he had designed the mid-engined Mustang I concept car powered by a 1.7 litre V4. Despite the small engine of the Mustang I, Lunn was the only Dearborn engineer to have some experience with a mid-engined car.

Overseen by Harley Copp, the team of Broadley, Lunn and Wyer began working on the new car at the Lola Factory in Bromley. At the end of 1963, the team moved to Slough, near Heathrow airport. Ford then established Ford Advanced Vehicles Ltd, a new subsidiary under the direction of Wyer, to manage the project.

The first chassis built by Abbey Panels of Coventry was delivered on March 16, 1963, with fibre-glass mouldings produced by Fibre Glass Engineering Ltd of Farnham.[7] The first "Ford GT" the GT/101 was unveiled in England on April 1 and soon after exhibited in New York. Purchase price of the completed car for competition use was £5,200.

It was powered by the 4.2 L Fairlane engine with a Colotti transaxle, the same power plant was used by the Lola GT and the single-seater Lotus 29 that came in a highly controversial second at the Indy 500 in 1963. (An aluminium block DOHC version, known as the Ford Indy Engine, was used in later years at Indy. It won in 1965 in the Lotus 38.)

RACING HISTORY

The Ford GT40 was first raced in May 1964 at the Nürburgring 1000 km race where it retired with suspension failure after holding second place early in the event.

Three weeks later at the 24 Hours of Le Mans, all three entries retired although the Ginther/Gregory car led the field from the second lap until its first pitstop. After a season-long series of dismal results under John Wyer in 1964, the program was handed over to Carroll Shelby after the 1964 Nassau race.

The cars were sent directly to Shelby, still bearing the dirt and damage from the Nassau race. Carroll Shelby was noted for complaining that the cars were poorly maintained when he received them, but later information revealed the cars were packed up as soon as the race was over, and FAV never had a chance to clean and organize the cars to be transported to Shelby.

Shelby’s first victory came on their maiden race with the Ford program, with Ken Miles and Lloyd Ruby taking a Shelby American-entered Ford GT to victory in the Daytona 2000 in February 1965. The rest of the season, however, was a disaster.

The experience gained in 1964 and 1965 allowed the 7-litre Mk II to dominate the following year. In February, the GT40 again won at Daytona. This was the first year Daytona was run in the 24 Hour format and Mk II’s finished 1st, 2nd, and 3rd.

In March, at the 1966 12 Hours of Sebring, GT40’s again took all three top finishes with the X-1 Roadster first, an Mk. II taking second, and an Mk. I in third. Then in June at the 24 Hours of Le Mans, the GT40 achieved yet another 1-2-3 result.

The Le Mans finish, however, was clouded in controversy: in the final few hours, the Ford GT of New Zealanders Bruce McLaren and Chris Amon closely trailed the leading Ford GT driven by Englishman Ken Miles and New Zealander Denny Hulme.

With a multimillion-dollar program finally on the very brink of success, Ford team officials faced a difficult choice. They could allow the drivers to settle the outcome by racing each other – and risk one or both cars breaking down or crashing. They could dictate a finishing order to the drivers – guaranteeing that one set of drivers would be extremely unhappy. Or they could arrange a tie, with the McLaren/Amon and Miles/Hulme cars crossing the line side-by-side.

The team chose the last and informed McLaren and Miles of the decision just before the two got in their cars for the final stint.

Then, not long before the finish, the Automobile Club de l’Ouest (ACO), organizers of the Le Mans event, informed Ford that the geographical difference in starting positions would be taken into account at a close finish – meaning that the McLaren/Amon vehicle, which had started perhaps 60 feet (18 m) behind the Hulme-Miles car, would have covered slightly more ground over the 24 hours and would, therefore, be the winner.

Secondly, Ford officials admitted later, the company’s contentious relationship with Miles, its top contract driver, placed executives in a difficult position. They could reward an outstanding driver who had been at times extremely difficult to work with, or they could decide in favour of drivers (McLaren/Amon) with less commitment to the Ford program but who had been easier to deal with.

Ford stuck with the orchestrated photo finish but Miles, deeply bitter over this decision after his dedication to the program, issued his own protest by suddenly slowing just yards from the finish and letting McLaren across the line first. Miles died in a testing accident in the J-car (later to become the Mk IV) at Riverside (CA) Raceway just two months later.

Miles’ death occurred at the wheel of the Ford "J-car", an iteration of the GT40 that included several unique features. These included an aluminium honeycomb chassis construction and a "bread van" body design that experimented with "comeback" aerodynamic theories.

Unfortunately, the fatal Miles accident was attributed at least partly to the unproven aerodynamics of the J-car design, as well as the experimental chassis’ strength. The team embarked on a complete redesign of the car, which became known as the Mk IV.

The Mk IV, newer design with an Mk II engine but a different chassis and a different body, won the following year at Le Mans (when four Mark IVs, three Mark IIs and three Mark Is raced). The high speeds achieved in that race caused a rule change, which already came in effect in 1968: the prototypes were limited to the capacity of to 3.0 litre, the same as in Formula One. This took out the V12-powered Ferrari 330P as well as the Chaparral and the Mk. IV.

If at least 50 cars had been built, sportscars like the GT40 and the Lola T70 were allowed, with a maximum of 5.0 L. John Wyer’s revised 4.7 litres (bored to 4.9 litres, and o-rings cut and installed between the deck and head to prevent head gasket failure, a common problem found with the 4.7 engine) Mk I.

It won the 24 Hours of Le Mans race in 1968 against the fragile smaller prototypes. This result, added to four other round wins for the GT40, gave Ford victory in the 1968 International Championship for Makes.

The GT40’s intended 3.0 L replacement, the Ford P68, and Mirage cars proved a dismal failure. While facing more experienced prototypes and the new yet still unreliable 4.5 L flat-12 powered Porsche 917s, the 1969 24 Hours of Le Mans winners Jacky Ickx/Jackie Oliver managed to beat the remaining 3.0 litre Porsche 908 by just a few seconds with the already outdated GT40 Mk I (in the very car that had won in 1968 – the legendary GT40P/1075).

Apart from brake wear in the Porsche and the decision not to change pads so close to the race end, the winning combination was relaxed driving by both GT40 drivers and heroic efforts at the right time by (at that time Le Mans’ rookie) Ickx, who won Le Mans five more times in later years. In 1970, the revised Porsche 917 dominated, and the GT40 had become obsolete.

INTERNATIONAL TITLES

In addition to four consecutive overall Le Mans victories, Ford also won the following four FIA international titles (at what was then unofficially known as the World Sportscar Championship) with the GT40:

1966 International Manufacturers Championship – Over 2000cc
1966 International Championship for Sports Cars – Division III (Over 2000cc)
1967 International Championship for Sports Cars – Division III (Over 2000cc)
1968 International Championship for Makes

VERSIONS

The Mk I was the original Ford GT40. Early prototypes were powered by 4.2 litres (255 cu.in) alloy V8 engines and production models were powered by 4.7 litres (289 cu.in) engines as used in the Ford Mustang. Five prototype models were built with roadster bodywork, including the Ford X-1.

MK. I was modified and run by John Wyer in 1968 and 1969, winning Le Mans in both those years and Sebring in 1969. The Mk.II and IV were both obsolete after the FIA had changed the rules to ban unlimited capacity engines; but the Mk.I, with its smaller engine, was legally able to race.

X-1 ROADSTER

The X-1 was a roadster built to contest the Fall 1965 North American Pro Series, a forerunner of Can-Am, entered by the Bruce McLaren team and driven by Chris Amon. The car had an aluminium chassis built at Abbey Panels and was originally powered by a 4.7 litre (289ci) engine. The real purpose of this car was to test several improvements originating from Kar Kraft, Shelby and McLaren. Several gearboxes were used: a Hewland LG500 and at least one automatic gearbox. It was later upgraded to Mk II specifications with a 7.0 litre (427ci) engine and a standard four ratio Kar Kraft (subsidiary of Ford) gearbox, however, the car kept specific features such as its open roof and lightweight aluminium chassis. The car went on to win the 12 Hours of Sebring in 1966. The X-1 was a one-off and was later ordered to be destroyed by customs officials.

MK II[

The Mk.II was very similar in appearance to the Mk.I, but it actually was a bit different from its predecessor. It used the 7.0 litre FE (427 ci) engine from the Ford Galaxie, which was an engine used in NASCAR at the time—but the engine was modified for road course use. The car’s chassis was more or less the same as the British-built Mk. I chassis, but it and other parts of the car had to be re-designed and modified by Carroll Shelby’s organization in order to accommodate the larger and heavier 427 engine. A new Kar Kraft-built 4 speed gearbox (same as the one described above; Ford-designed, using Galaxie gearsets) was built to handle the more powerful engine, replacing the ZF 5-speed used in the Mk.I. This car is sometimes referred to as the Ford Mk.II.

In 1966, the Mk.II began dominating the world-famous 24 Hours of Le Mans race in France. In 1966 the Mk.II took Europe by surprise and beat Ferrari to finish 1-2-3 in the standings. Ford GT40’s went on to win the race for four consecutive years (1966-1969).

For 1967, the Mk.II’s were upgraded to "B" spec; they had re-designed bodywork and twin carburettors for an additional 15 hp. A batch of wrongly heat treated input shafts in the transaxles sidelined virtually every Ford in the race at Daytona, however, and Ferrari won 1-2-3. The Mk.IIB’s were also used for Sebring and Le Mans that year, and also it won the Reims 12 Hours in France. For the Daytona 24 Hours, two Mk II models (chassis 1016 and 1047) had their engines re-badged as Mercury engines. Mercury was a Ford Motor Company division at that time, and Mercury’s 427 was exactly the same engine as Ford’s with different logos. Ford saw a good opportunity to advertise that division of the company.

MK III

The Mk III was a road-car only, of which 7 were built. The car had four headlamps, the rear part of the body was expanded to make room for luggage, the 4.7-litre engine was detuned to 335 bhp (250 kW), the shock absorbers were softened, the shift lever was moved to the centre and the car was available with the steering wheel on the left side of the car. As the Mk III looked significantly different from the racing models many customers interested in buying a GT40 for road use chose to buy an Mk I that was available from Wyer Ltd. Of the 7 MK III that was produced 4 were left-hand drive. One of these examples is currently on display at the Petersen Automotive Museum.

J-CAR

1967 Ford GT40 Mk IV, which was developed from the J-car. This particular car, J-4, won the 1967 12 Hours of Sebring.
In an effort to develop a car with better aerodynamics and lighter weight, it was decided to retain the 7-litre engine, but redesign the rest of the car and ditch the Mk.I/Mk.II chassis. In order to bring the car more "in house" and lessening partnership with English firms, Ford Advanced Vehicles was sold to John Wyer and the new car was designed by Ford’s studios and produced by Ford’s subsidiary Kar Kraft under Ed Hull. There was also a partnership with the Brunswick Aircraft Corporation for expertise on the novel use of honeycomb aluminium panels bonded together to form a lightweight but rigid "tub". The car was designated as the J-car, as it was constructed to meet the new Appendix J regulations which were introduced by the FIA in 1966.

The first J-car was completed in March 1966 and set the fastest time at the Le Mans trials that year. The tub weighed only 86 lb (39 kg), and the entire car weighed only 2,660 lb (1,210 kg), 300 lb (140 kg) less than the Mk II. It was decided to run the MkIIs due to their proven reliability, however, and little or no development was done on the J-car for the rest of the season.

Following Le Mans, the development program for the J-car was resumed, and a second car was built. During a test session at Riverside International Raceway in August 1966, with Ken Miles driving, the car suddenly went out of control at the end of Riverside’s high-speed, 1-mile-long back straight. The honeycomb chassis did not live up to its design goal, shattering upon impact, bursting into flames and killing Miles. It was determined that the unique, flat-topped "bread van" aerodynamics of the car, lacking any sort of spoiler, were implicated in generating excess lift. Therefore, a more conventional but significantly more aerodynamic body was designed for the subsequent development of the J-car which was officially known as the GT40 Mk IV. A total of nine cars were constructed with J-car chassis numbers although six were designated as Mk IVs and one as the G7A.

MK IV

The Mk IV was built around a reinforced J chassis powered by the same 7.0 L engine as the Mk II. Excluding the engine, gearbox, some suspension parts and the brakes from the Mk.II, the Mk.IV was totally different from other GT40s, using a specific chassis and specific bodywork.

It was undoubtedly the most radical and American variant of all the GT40’s over the years. As a direct result of the Miles accident, the team installed a NASCAR-style steel-tube roll cage in the Mk.IV, which made it much safer, but the roll cage was so heavy that it negated most of the weight saving of the then-highly advanced, radically innovative honeycomb-panel construction.

The Mk. IV had a long, streamlined shape, which gave it exceptional top speed, crucial to do well at Le Mans in those days (a circuit made up almost entirely of straights)- the race it was ultimately built for. A 2-speed automatic gearbox was tried, but during the extensive testing of the J-car in 1966 and 1967, it was decided that the 4-speed from the Mk.II would be retained. Dan Gurney often complained about the weight of the Mk.IV, since the car was 600 pounds (270 kg) heavier than the Ferrari 330 P4’s. During practice at Le Mans in 1967, in an effort to preserve the highly stressed brakes, Gurney developed a strategy (also adopted by co-driver A.J. Foyt) of backing completely off the throttle several hundred yards before the approach to the Mulsanne hairpin and virtually coasting into the braking area. This technique saved the brakes, but the resulting increase in the car’s recorded lap times during practice led to speculation within the Ford team that Gurney and Foyt, in an effort to compromise on chassis settings, had hopelessly "dialled out" their car. The car proved to be fastest in a straight line that year thanks to its streamlined aerodynamics- it did 212 mph on the 3.6 mile Mulsanne Straight.

The Mk. IV ran in only two races, the 1967 12 Hours of Sebring and the 1967 24 Hours of Le Mans and won both events. Only one Mk.IV was completed for Sebring; the pressure from Ford had been amped up considerably after Ford’s humiliation at Daytona 2 months earlier. Mario Andretti and Bruce McLaren won Sebring, Dan Gurney and A.J. Foyt won Le Mans (Gurney and Foyt’s car was the Mk.IV that was apparently least likely to win), where the Ford-representing Shelby-American and Holman & Moody teams showed up to Le Mans with 2 Mk.IV’s each.

The installation of the roll cage was ultimately credited by many with saving the life of Andretti, who crashed violently at the Esses during the 1967 Le Mans 24 Hours but escaped with minor injuries. Unlike the earlier Mk.I – III cars, which were built in England, the Mk.IVs were built in America by Kar Kraft. Le Mans 1967 remains the only truly all-American victory in Le Mans history – American drivers, team, chassis, engine and tires. A total of 6 Mk IVs were constructed. One of the Mk IVs was rebuilt to the Ford G7 in 1968, and used in the Can-Am series for 1969 and 1970, but with no success. This car is sometimes referred to as the Ford Mk.IV.

MKV

Peter Thorp had searched years looking for a GT40 in good condition. Most of the cars had problems including the dreaded rust issue. His company, Safir Engineering, was building and fielding Formula 3 race cars, in addition, had a Token Formula

One car purchased from the Ron Dennis Company, Rondell Racing. Formula One events in which Safir Engineering competed included Brands Hatch and Silverstone. Safir was also redesigning Range Rovers modifying the unit to six-wheel drive and exporting them to foreign markets. Safir technical capabilities were such that they could rebuild GT40s. It was with this in mind that Thorp approached John Willment for his thoughts. Wilment was of the same mindset, and discussions between the two were positive. It was soon decided that there would be a limited, further run of the significant GT40. JW Engineering would oversee the build, and Safir was to do the work. The continued JW Engineering/Safir Engineering production would utilize sequential serial numbers starting at the last used GT40 serial number and move forward. Maintaining the GT40 Mark nomenclature, this continued production would be named GT40 MkV. These cars would carry JW Engineering chassis plates identical to those on all the GT40s produced by JW Engineering.

JW Engineering wished to complete the GT40 chassis numbers GT40P-1087, 1088 and 1089. This was supposed to take place prior to the beginning of Safir production, however, the completion of these three chassis’ was very much delayed.

Ford’s Len Bailey was hired to inspect the proposed build and engineer any changes he thought prudent to ensure the car was safe, as well as minimize problems experienced in the past. Baily changed the front suspension to Alan Mann specifications, which minimized nose-dive under braking. Zinc coated steel replaced the previous uncoated rust-prone sheet metal. The vulnerable drive doughnuts were replaced with CV joints and the leak-prone rubber gas tanks were replaced with aluminium tanks. The GT40 chassis was upgraded without making any major changes.

Tennant Panels supplied the roof structure and the balance of the chassis was completed by Safir. JW Engineering employees were used where ever possible. Bill Pink, noted for his electrical experience and the wiring installation of previous GT40 automobiles, was brought in. Also, Jim Rose was hired for his experience with working at both Alan Mann and Shelby. After the manufacture of chassis 1120, John Etheridge of JW Engineering was hired to manage the GT40 build. The chassis was supplied from Adams McCall Engineering and parts supplied from Tennant panels. For the most part, the MkV resembled very closely the MkI car, although there were a few changes, and, as with the 60s production, very few cars were identical.

The first car, GT40P-1090, had an open-top in place of roofed doors. Most motors were Ford small block, Webers or 4 Barrel Carburetor. Safir produced five Big Block GT40s, serial numbers GT40P-1128 to GT40P-1132. These aluminium big block cars all had easily removable door roof sections. Most GT40s were high-performance street cars however some of the MkV production can be described as a full race. Two road cars GT40P-1133 (roadster) and GT40P-1142 (roofed doors) were built as lightweights which included an aluminium honeycomb chassis and carbon fibre bodywork. Complete files on each of these forty cars have been forwarded to authors and journalists known for maintaining accurate records on the GT40 automobile.

GT40/R COMPETITION AT ROAD AMERICA

A "Roaring Forties" replica of a 1965 Ford GT40 in Shelby livery on display at the 2005 United States Grand Prix
Several kit cars and replicas inspired by the Ford GT40 have been built. They are generally intended for assembly by the enthusiast in a home workshop or garage. There are two alternatives to the kit car approach, either continuation models (exact and licensed replicas true to the original GT40), or modernizations (replicas with upgraded components, ergonomics & trim for improved usability, drivability and performance).

GT40/R Competition, United States: Authentic GT40 built by Superformance and co-designed with Pathfinder Motorsports. A GT40/R (GT40P/2094) campaigned by Pathfinder Motorsports with an engine built by Holman Moody won both the 2009 US Vintage Grand Prix and the 2009 Governor’s Cup at Watkins Glen.[15]
CAV GT: Originally designed for customers to build as a kit, the CAV GT has evolved into a modernized replica that is now factory-built in Cape Town, South Africa.
Holman Moody: GT40 Mark II won third at Le Mans in 1966, and can still manufacture a Holman GT from 1966 blueprints.
GT40 Spyder, United States: Built by E.R.A. Replica Automobiles in New Britain, CT, the Spyder is an MK2 Canadian American (CAN-AM) racing replica.[16]
Ford GT[edit]

2005 Ford GT
Main article: Ford GT
At the 1995 Detroit Auto Show, the Ford GT90 concept was shown and at the 2002 show, a new GT40 Concept was unveiled by Ford.

While similar in appearance to the original cars, it was bigger, wider, and three inches taller than the original 40 inches (1.02 m). Three production prototype cars were shown in 2003 as part of Ford’s centenary, and delivery of the production Ford GT began in the fall of 2004. The Ford GT was assembled in the Ford Wixom plant and painted by Saleen, Incorporated at their Saleen Special Vehicles plant in Troy, Michigan, USA.

A British company, Safir Engineering, who continued to produce a limited number of GT40s (the MkV) in the 1980s under an agreement with Walter Hayes of Ford and John Wilment of J.W. Automotive Engineering, owned the GT40 trademark at that time, and when they completed production, they sold the excess parts, tooling, design, and trademark to a small American company called Safir GT40 Spares, Limited based in Ohio. Safir GT40 Spares licensed the use of the GT40 trademark to Ford for the initial 2002 show car, but when Ford decided to make the production vehicle, negotiations between the two failed, and as a result, the new Ford GT does not wear the badge GT40. Bob Wood, one of three partners who own Safir GT40 Spares, said: "When we talked with Ford, they asked what we wanted. We said that Ford owns Beanstalk in New York, the company that licenses the Blue Oval for Ford on such things as T-shirts. Since Beanstalk gets 7.5 per cent of the retail cost of the item for licensing the name, we suggested 7.5 per cent on each GT40 sold."[17] In this instance, Ford wished to purchase, not just license the GT40 trademark. At the then-estimated 5,000 per copy, 7.5% of 4,500 vehicles would have totalled approximately ,187,500.[17] It was widely and erroneously reported following an Automotive News Weekly story that Safir "demanded" the million for the sale of the trademark. Discussions between Safir and Ford ensued. However, in fact, the Ford Motor Company never made an offer in writing to purchase the famed GT40 trademark. Later models or prototypes have also been called the Ford GT but have had different numbering on them such as the Ford GT90 or the Ford GT70. The GT40 name and trademark are currently licensed to Superformance in the USA.

A second-generation Ford GT was unveiled at the 2015 North American International Auto Show. It features a 3.5L twin-turbocharged V6 engine, carbon fibre monocoque and body panels, pushrod suspension and active aerodynamics. It will compete in the FIA World Endurance Championship and the United SportsCar Championship.